THE ENFORCEMENT OF SECURITY POLICIES FOR COMPUTATION

Anita K. Jones
Carnegie-Mellon University

and

Richard J. Lipton
Yale University

Abstract:

Security policies define who may use what information in a computer system.
Protection mechanisms are built into a system to enforce security policies.

In most

systems, however, it is quite unclear what policies a mechanism can or does enforce.

This paper defines security policies and protection mechanisms precisely and bridges
the gap between them with the concept of soundness: whether a protection mechanism

enforces a policy.
compared.
more "complete'" mechanism.
be constructed.

Key words and phrases:

Different sound protection mechanisms for the same policy can then be
We also show that the "union' of mechanisms for the same program produces a
Although a '"maxiwmal” mechanism exists, it cannot necessarily

completeness, high-water mark, negative inference, observability,

protection, protection mechanism, security, security mechanism,
sound, surveillance, violation notice

CR categories: 2.11, 4.30, 4.31

1. Introduction

Society differentiates kinds of information and
endeavors to control its use, Out of concern for
privacy of individuals and the cost of information
theft, society has techniques for controlling who
can obtain certain information, when they can
obtain it, what uses they can put it to, and even
who can produce it. We now symbolically represent
sensitive information within computer systems.

The control of information dissemination has
proven to be as difficult to implement in computer
systems as in the rest of society.* It is
currently the subject of study by many researchers:
Bell et al., Denning, Fenton, Jones, Lampson,
Neuymann et al., Popek, Rotenberg, Schroeder,
Walter et al., Weissman, Wulf et al. [1,2,4,5,6,7,
10,11,12,13,14,15].

* Benjamin Franklin observed that '"Three may keep
a secret, if two of them are dead.”

Jones was supported in part by the National
Science Foundation under contract DCR 75-07251 and
in part by the Advanced Research Projects Agency
of the Office of the Secretary of Defense
(F44620~73-C-0074), which is monitored by the Air
Force Office of Scientific Research. Lipton was
supported in part by the National Science
Foundation under contract DCR 74-24193 and in
part by the Army Research Office under contract
DAHCO4-72-A-0001. Both authors were supported in
part by the Rand Summer Institute on Security.

197

The need for precise and complete under-
standing of the basic questions in the security
area 1s mandatory., To illustrate this, compare
security enforcement flaws to compiler design
flaws. When a compiler error occurs, the users
complain and demand correction. On the other
hand, when a security error occurs, the violator
does not disclose the system flaw that allowed
him to perform prohibited actions. Often in the
case of information theft no trace remains to show
that one user read information private to another.
For these reasons precision and proofs are not a
luxury but a necessity.

While precision and proofs are required, in
order to be credible the basic framework must be
simple and clear. No one will believe an
unstructured system is secure, just as no one will
believe that a formal proof is correct if it is
long, poorly structured, and based on imprecisely
defined terms. We conclude that to be useful the
basis of a theory in the security area must be
simple.

This paper develops the basic notions
relevant to security, providing a framework in
which the underlying principles of security can be
investigated. We believe it to be precise, yet
simple. As we illustrate, a clear understanding
of these basic notions makes evident the
inadequacies of some of the proposed approaches
to providing security.

The basic elements of our theory are precise

definitions of programs, of protection mechanisms,
and of security policies. A security policy
defines what information is to be protected; it
has a non-procedural form. For example, a
security policy might state that a user is not to
obtain "top secret'" information. In contrast, a
protection mechanism defines how information is to
be protected; it has a procedural form. For
example, a protection mechanism might check each
operation performed by a user. Soundness defines
the bridge between the nonprocedural security
policy and the procedural protection mechanism.

2. Basic Model

Security enforcement involves restrictions on the
behavior of computer programs. These restrictions
involve determining whether or mnot the output of a
program encodes the proper information. This
determination clearly depends only on the
functional behavior of the program: If two
programs are functionally equivalent, then their
outputs certainly encode the same information.
This observation leads to our view of programs
simply as functions from some set of inputs to
some set of outputs.

Definition:
Q: Dy x ... x D >E

Define Q to be a program provided

where Q is a total function and D1 is the range

of the ith input and E is the range of the output.

As demonstrated by Parnas [9] and extended
by Neumann et al. [7], programs can have two
distinct types of functions. They can be used as
"V functions," i.e. they can be used to "view"
their "inputs." On the other hand, they can be
uged as "O operators,”" i.e. they can be used to
"operate' on their inputs. (Here input
corresponds to the current state of the system.)
Consequently, there are two types of security
questions. Suppose that Q is a program, i.e.

Q: D1 X 4ee X Dk + E.

If Q is used as a view function, then the
security question is:

Does the value of Q(dl""’dk) contain

any information that it should not?

This is the so-called "confinement" or
"memoryless subsystem' question studied by
Lampson [6], Schroeder [12], and Fenton {[4].
the other hand, if Q is used as an operator
function, then the security question is:

On

Has the function Q altered any infor-
mation that it should not?

This second question has sometimes been called
"data security" (Popek [10]). It concerns
itself with whether or not information, such as
a system table, has been illegally altered and
hence lost.

In the rest of this paper we will study the
first security question, i.e. the case where Q
is used as a view function. We do, however,
assert without proof that the same methods used

198

here to study this case can also be used to study
the second case. Let us now examine some
examples.

Example 1: Fenton [4] studies programs Q of the

form
Q: D1 X L. % Dk > E
where Di and E are the set of natural numbers.

The value Q(dl,...,

the computation of some given Minsky-machine that
was started with its ith register containing di'

dk) is the value obtained by

Fenton studies whether or not Q(dl”"’dk)

contains in his terms "priv" information. We will

return again to this example.

Example 2: Consider a program Q of the form
Q: Dl X aewe XDy X Fp X ooue X F, ~ E.
Here D, is the set of possible values for the ith

i

"directory"; F, is the set of values for the ith

i
"file." The value of Q(dl,...,dk,fl,...,fk) is

the resul: of some file manipulation program. In
this example the 1t# directory will contain
information about who can access the ith file.

We wish, therefore, to know whether or not
Q(dl""’dk’fl""’fk) contains any information -

about a file that was to be denied to us. We

will return again to this example.

Our model of security must check carefully
that the value of the view function Q is all the
information that is available about the inputs.
We raise this restriction to the status of a
postulate:

The Observability Postulate: The value of
Q(dl,...,dk) must encode all the information

available about the value of (dl,...,dk).

Intuitively this statement appears sensible, yet
almost too simple and obvious to mention. But it
requires careful attention for two reasomns.
First, it is extra-mathematical in that no proof
that it holds can ever be given. Second, there
is a series of examples where it does not hold
(Lampson [6]). One example of program output
that is sometimes overlooked 1s execution time —-
an implicit output that is often available for
interactive programs,

Example 1 continued: As Fenton correctly points
out, the observability postulate does not hold
for his programs. Indeed, both Denning [2] and
Fenton leave it open how to handle execution
time. One of the contributions of this paper is
the understanding of how to handle execution time
in a clear manner. This is elaborated later on.

We now turn our attention to the study of
protection mechanisms. A protection mechanism
acts as a "'gatekeeper': It suppresses or alters
‘the output of the program it is protecting. In
an operating system the protection mechanism is.
usually interleaved with the execution of the
program being protected. This is not, however,

necessary. One can imagine a static protection
mechanism that is implemented at compile time.
Therefore, our definition of protection mechanism
must be able to accommodate a wide variety of
possible types of mechanisms.

Definition:

a program.

Suppose that Q: D1 X 44 X Dk -+ E is

Then M: Dl X te. X Dk - EUF is a
protection mechanism for Q provided for all

(dl""’dk) in Dl X ... X Dk either

1) M(dl,...,dk) = Q(dl,...,dk) or
2) M(dl,...,dk) is in the set F.

The set F consists of the violation notices of M.

A protection mechanism acts as follows:
Suppose that (dl""’dk> is some possible input.

Then the protection mechanism can either give
Q(dl""’dk) to the user or return a violation

notice. The user is to interpret the violation
notice as: "It looks as if you (the user) have
attempted to view information that is to be denied
to you; hence, I (the protection mechanism) am
giving you this message."
Suppose that Q: D

Example 3: 1% e X Dk + E is a

program. Then there are two trivial protection
mechanisms for Q. The first is the program Q
itself. This corresponds, of course, to no
protection at all. The second is the program

M: Dy X ... x D > Eu{a}

where A is not in E and M(dl,...,dk) is always

equal to A,
plug."

This corresponds to "pulling the

Example 1 continued: In Fenton's model there are
two interesting points about his notion of
protection mechanisms. First, Fenton does not
make clear the distinction between the program Q
and the mechanism M. This lack of distinction
means, for example, that he cannot compare
different types of protection mechanisms. Second,
Fenton allows an unusual type of violation notice.
In his case the violation notices (the set F) and
the possible output of the original program Q

(the set E) need not be disjoint. The set F
includes the results of partial computations of
the program Q. Thus it may be difficult for a
user to determine whether or not he is getting
Q(dl,...,dk); (dl,...,dk) is, after all, both the

input and a violation notice. Practically
speaking, this difficulty may make it
particularly hard to find program bugs that
cause violation notices.

Example 2 continued: A violation notice in our
simple file gystem might be a message of the form
"Illegal access attempted, run aborted.”

The purpose of a protection mechanism is to
control information; in our framework this leads
to the notions of security policy and soundness.

Definition: A security policy I for the program

199

Q: Dl X ,.. X Dk -+ E is a function from
D

1 X ++e XDy to D where D is a new set.

The key relation between a protection
mechanism and a security policy is whether the
mechanism enforces the policy. This relation is
called "soundness."

Definition: Suppose that I: Dy X «.. XD > D is
a security policy and M: Dl X o a.. X Dk -+ EUF is a

protection mechanism for the program Q. Then M
is sound provided there is a function M': D »> EUF
such that for all (d;,...,d}) (D = a new set)

= M'(I(dl,...,dk)).

M(d .,d

1200 d)

A security policy, therefore, acts as an
"information filter.”" A mechanism M is sound
provided it behaves as i1f it received as input
not (dl"'f’dk) but rather I(dl,...,dk). The

value of I(dl,...,dk) has presumably filtered out
all the information that was to be denied to the
user. Let us now examine some security policies.

1. Suppose that I(dl,...,dk) is always 0. Then

clearly this security policy is "Allow the user
no information."

2, Suppose that I(dl""’dk) is always (dl""’dk)'
Then this security policy is "Allow the user
any information he wants.'

”dk) = (di ""’di).
1 m
Then this security policy is "Allow the user
any information from di ,...,di ; deny him all
1 m

information about the other dj's."

3. Suppose that I(dl"'

Each of these security policies is characterized
by either allowing information or allowing no
information about some input. This type of
security policy 1is the type that is studied in
detail here. These policles are the ones most
commonly supplied in real systems. For example,
after a user logs on to a system, the files in
the system can be divided into two classes: those
he should be able to access and those he should
not. (This partition of files may change with
time, but at any instant such a partition exists.)
Because of the importance of these policies we
introduce a shorthand for them:

Definition:

a program,

X Dk > E is

Let allow(il,...,im) denote the

Suppose that Q: D1 X ..

security policy I: D1 X 440 X Dk he Dil X .. X Dim

where

I(dl,...,dk) = (di ,...,di).
1 m

Thus the security policy in (1) is allow(). The
security policy in (2) is allow(l,...,k). The
policy in (3) is allow(il,...,im).

Example 1 continued: Fenton's notions of priv and

null correspond exactly to security policies of
the form allow(...).

Our definition of security policy is oriented
towards obtaining a simple framework. The
definition of security policy as a function, even
with the allow shorthand, is not suitable for use
in a real system. In such a system much more
powerful shorthands are needed. For example, the
"*" = all convention used in Multics (Organick [8]).
These issues are not addressed here.

We will now present a series of examples.
These examples should help in understanding the
basic notions of security policy and soundness.

Example 3 continued: Clearly the protection
mechanism that always outputs A is sound for any
security policy. A program as its own protection
may or may not be sound.

Example 2 continued: An interesting security
policy here is

I(dp,eeesdy,fy,en

.,fk)
= (dl""’dk’fi""’fi)
1

where fi is fi

This security policy allows the user information

about the ith file only in the case that the ith

directory permits it. Note that the user can

always obtain the value of all the directories.

Note also that this security policy is not of the
form allow(...).

if di = "YES" and is 0 otherwise.

Example 4: Denning [2] and Rotenberg [11] both
contain an example of protection mechanisms that
leak information via their violation notices.
This should not be considered surprising; their
examples simply demonstrate unsound protection
mechanisms. If M is sound, i.e.

M(dl,...,dk) = M'(I(dl,...,dk)), then any

decision made by M to output a violation notice
can depend only on allowed information.

Example 5: Suppose that we next consider the
following '"logon" program:

qQ: D; x D, x Dy {true,false}

where D1 is the set of userids and D2 is the set

of possible tables that consist of pairs of the
form

(userid,password)

and D3 is the set of passwords. The value

Q(dl,dz,d3) is true if and only if (dl,d3) is in
d2, i.e. only in the case that the password

corresponds correctly to the given userid. Now
consider the security policy allow(1,3), i.e. do
not let the user have any information from the
password table. Then Q as its own protection
mechanism (see example 3) is unsound. The reason
this program is workable in practice is that the
amount of information obtained by the user is
"small,"

The security policies studied here

Example 6:

200

are "information control" policies. They must be
distinguished from "access control" policies.

For example, enforcing an access control policy
that specifies that the operation READFILE(A)
cannot be performed is not the same as insuring
that information about A 1s not extracted. There
may be a sequence of operations excluding '
READFILE(A) that has the same effect as
READFILE(A) .

Example 1 continued: Fenton's protection
mechanism i5 not completely defined. Indeed one
reasonable interpretation of it is unsound. The
difficulty is the halt statement:

if P = null then halt.

What happens if P # null? One possibility is that
in this case an error message (i.e. a violation
notice) is output. This is, however, unsound, as
the following program demonstrates:

y = 0;

0 then begin y := 1; halt end;

This program will output an error message if and
only if x = 0. 1If the security policy wishes to
deny information about x, then this 1s unsound.
Intuitively, the difficulty here is what we call
"negative inference." When the program behaves
correctly (i.e. does not try to halt when it
should not) everything is fine; it fails when the
program behaves incorrectly. A classic negative
inference is due to A. C. Doyle [3]:

Ingpector: Is there any other point to which you
would wish to draw my attention?

Holmes: To the curious incident of the dog in
the nighttime,.

Inspector: The dog did nothing in the nighttime.

Holmes: That was the curious incident.

We next relate the observability postulate
and the concept of soundness. Consider the
following program Q:

Loop for
103 steps

yel

We consider x as the input and y as the output;
hence, for any x, Q(x) = 1. For the security
policy allow(), i.e. allow no information about
x, the program Q as its own protection mechanism
is sound. This follows trivially since Q is a

constant function. We can, however, simply observe
the running time of Q to determine whether or not
x = 0. This difficulty stems not from the
definftion of soundness but rather from a
violation of the observability postulate:
running time of Q was an implicit output.

The

This example is compatible with our framework
as follows: Let a program's output be not just
its computed output value but also its running
time, which records the elapsed real time, the
elapsed compute time, or the number of steps
executed. Now returning to program Q the
observability postulate is valid. In particular
Q(x) = (1,T), where T is the number of steps
executed. Clearly this program is not sound for
the policy allow(). This method is used in
section 3 to show how our surveillance protection
mechanism can handle running time.

One further example should reinforce the
subtlety and importance of the relation between
soundness and the observability postulate. Let
programs have inputs that are placed on a linear
one-way read-only tape with the head initially at
the leftmost character:

4

1) Zk “ee

where each zy is a block of characters. Consider

a security policy allow(2), i.e. allow information
only about the second block. Then we claim that
no program Q can read z, and also be sound,

provided running time i1s observable. This follows
since, in order for Q to get to the part of the
tape where z, is stored, it must move across z.

Even if Q does not "look" at zy, 1t will encode

the length of zy into the computation of Q;

hence, Q@ will not be sound. How can we avoid this
problem? One answer is to add a new operation,
say tab(i). This operation in one step causes the
read head to jump directly to the ith block. Now
Q can read z, and be sound. But a new problem

arises: Is the observability postulate valid?
Perhaps tab(i) takes time dependent on the length
of zl""’zi—l? This is the crux of the problem,

and there seem to be two answers: Either (1) run
tab(i) so that it uses constant time, or (2) apply
our methods recursively to tab(i).

While soundness is the most important bridge
between protection mechanisms and security
policies, the central issue is not just to
construct sound protection mechanisms. The
protection mechanism that always outputs some
fixed violation notice is certainly sound --
recall example 3. It is also useless. (It's
equivalent to pulling the computer's plug out of
the wall.) We are therefore led to consider the
concept of how "complete" a protection mechanism
is.

Definition: Suppose that Ml and M? are protection
mechanisms for the same program Q and policy I.

Then Ml is as complete as M2 (M1 ¥ M2) provided,
for all inputs a (a stands for (al,...,ak)),

201

if M2(a) = Q(a) then MY(a) = Q(a). Also M’ is
more complete than M2 ot > M2) provided t p e
and, for some a, Ml(a) = Q(a) and Mz(a) z Qa).

The relation > is a partial ordering on the
protection mechanisms for a given program and
policy. Also, ? is a practically motivated
ordering: Consider a single output program with

two protection mechanisms M; and My, My > M,

implies that Ml never gives a violation notice

when M2 does not. This implies that the utility

of Ml is at least as high as that of M,, for one

2’
is interested only in getting non-violation
notices. ‘

We can show how to '"join" two sound
protection mechanisms to form a new sound one that
is as complete as each of the other two.

Definition:

mechanisms for the program Q.

Suppose that M1 and M2 are protection
Define M1 v M2 to
be the protection mechanism M defined by

Q(a) provided
V input a, M(a) = 21, My(a) = Q@), i ¢ {1,2}

Ml(a) otherwise

The key property of union is that if either Ml(a)
or Mz(a) has the same output as Q(a) then so has
the union, M1 v Mz(a). Note that, even though

the definition is not symmetric, Ml VM, -= M, v M.

Theorem 1: Suppose that Ml and M2 are sound,

protection mechanisms for program Q and security
policy I. Then Ml v M2 is a sound protection

mechanism for Q and I. Moreover, M; V M, F My
and M; V M, FM,.

Proof: Immediate from the definitions. [J

We can easily generalize Theorem 1 to show
that from the sound protection mechanisms
Ml’MZ"" we can define one all-encompassing

sound protection mechanism M = Ml

such that M #Mi.

v M2 Vo

Indeed it can easily be shown

that the sound protection mechanisms form a
lattice; we shall not, however, need this
observation in the sequel.

Theorem 2: For any program Q and security policy
I there exists a sound protection mechanism M for
Q and T such that M is maximal, That is, for all
sound protection mechanisms M' for Q and I, M 2 M'.

Proof: Let M = {M' | M' sound for Q and I}. Let

M then be u N. Then as in Theorem 1, M =N for
NeM

any sound protection mechanism M; hence, M is

maximal. 0

(Note that M, while well defined as a function,

may not be recursive —— even if Q is.)

We have established that the maximal
protection mechanism exists, but as we shall show
later, it cannot always be constructed.

We have now completed the development of our
security model., The value of any model is in its
useful application. We find that having the
model's precise definitioms, which are independent
of any particular model of computation or any
mechanics of protection mechanism implementation,
aids in understanding and appraising work in the
gsecurity area. For example, we have already noted
that if all pertinent observables cannot be
specified then the "forgotten" observables provide
a means for leaking information. Such was the
case for she PDP-10 Temex system where the
presance or absence of page faults could be used
to obtalp passwords. ;

In summary, we should point out that we have
informally used words like "information flow" and
"dependence." What these terms mean is precisely
captured by the definition of soundness. Though
our security model can be easily understood
informally, it is mandatory that it be precisely
defined as well. Without a precise basis on which
to build, one will never be able to make progress
in convincing others about the security properties
of a system.

3. Surveillance Protection Mechanism

This section both illustrates a new protection
mechanism and develops the framework put forth in
the preceding section. In order to define this
mechanism we will restrict our programs to be
flowcharts with a single output and policies of
the form allow(...). We will then show how to
assign to each flowchart and security policy a
protection mechanism called the surveillance
protection mechanism. This mechanism and a
modified version that ignores runtime are then
proved to be sound.

Definition: A flowchart F with input variables

ESTRREFE A and with program variables TyseoesTp

and with output variable y (i.e. those variables
used for temporary values) is a finite connected
directed graph whose nodes are boxes of the form:

‘START >
FALSE a TRUE
ﬁ

3) Assignment box:

1) Start box:

2) Decision box:

4) Halt box:

202

Here B(W) is a predicate and E(W) is an
expression. We ascribe to the flowchart F the
usual semantics: The values of the variables
(input, program, and output) are the integers.
There is exactly one start box; execution begins
there by initializing all the program variables
and the output variables to 0. Since we view the
flowchart F as computing a program @ with domain
Zx ... x Z(Z = integers), we assume that each
input variable is initialized to the value that
corresponds to the current input. Thus if
(al,...,ak) is the input value, then x, is

i
initialized ‘to a. Execution then follows

logic of the flowchart; at a decision box, the
path that corresponds to the predicate's truth
value is taken. Please note that no specific
assumptions are made about what predicates or
expressions are allowed: Any reasonable choice is
allowed (i.e. so long as predicates and
expressions are recursive there is no difficulty.)

the

The observability postulate makes it
necessary to state exactly what the range of Q
(the program computed by F) is. Here we will
assert that we will study these flowcharts under
two distinct assumptions. First, we will study
the case where the range of Q is £ x Z, That is,
the value of Q(a) has two components. The first
1s the value of -y when the flowchart halts; the
second is the number of steps executed by the
flowchart, i.e. the "time" used by the flowchart
in computing the value of y. Therefore, we will
be encoding the running time of our flowcharts.
(Note that we might have chosen any of a number
of attributes other than running time, but we feel
that it is representative.) Second, we will also
study the case where the range of Q is just Z 1In
this case the value of Q(a) has only one component:
the value of y when the flowchart execution halts.
This second case 1s the one where we assume that
running time is not observable to a user.

We next describe the surveillance protection
mechanism., It is based on the idea of keeping
track of what inputs a variable may "depend on."
Essentially we will associate with each variable
in the program a new variable y. The value of y

will be the set of indices of input variables

that may have affected the current value of v in
some way. A key point here is that we must keep
track of v not only for input, program, and output

variables but also for the program counter of the
program. The need to do this for the program
counter is independently i1llustrated in Fenton
[4]. Therefore, let the program counter of Q be
denoted by C.

Definition: Suppose that Q is a flowchart
program.t Associate with each variable v of Q
(input Xpseees¥p; PTOGTAM Tpy.uu,T output y;

program counter C) a new variable v called the

surveillance variable of v. The values of v are

always subsets of {1,...,k}.

We will now construct the surveillance

+ We will now identify programs with flowcharts,

protection mechanism for the case where time is
not part of the output (i.e. when the range of Q
is just). Then the surveillance protection
mechanism M corresponding to the program Q and
some security policy I = allow(J) is constructed
as follows.

The variables of M are the variables of Q
plus the surveillance variables. M is obtained
from Q by applying the following transformations:

1) Insert directly after the START box the
assignments that set v to {i} if v is the
input x; and set y to # otherwise. (@ is the
empty set.)

2) Replace each assignment box in Q

v

v <« E(wl,...,ﬁ;zil

with the two assignment boxes

¥

v+ E(wl,...,wp)

V+WyU..UW
P P
v

3) Replace each decision box in Q

Here A is a symbol that is not a normal output of
Q; it is used as a violation notice. Recall that
I = allow(J). Clearly, given a program Q and a
security policy I, M is indeed a protection
mechanism. Indeed, M is always sound:

Theorem 3: If M is the surveillance protection
mechanism for the program Q and the security
policy I, then M is sound for Q and I provided
running times are not observable.

In contrast, it is easy to see that M is
unsound when running time is observable. Indped,
both Fenton [4] and Denning [2] point out that it
is an interesting problem of how to handle running

time. We will now show how our surveillance
protection mechanism can be modified to handle
running time and still remain sound.

Definition: Suppose that Q is a program and I is
a security policy. Then construct the
surveillance protection mechanism M' for the case
where running time is observable as follows:

Transform Q into M' by replacing each decision
box of Q

FALSE - TRUE

with the structure

and performing the other transformations as
before. Intuitively, if a disallowed variable is
about to be tested, flowchart execution is halted
and a violation notice is given —- immediately.
Then it is easy to see that M' is a protection
mechanism. Indeed,

Theorem 3': 1f M' is the surveillance protection
mechanism for the program Q and the security
policy I, then M' is sound for Q and I even if
running times are observable.

4, Comparison of Protection Mechanisms

In the last section, the surveillance protection
mechanism was presented. It is sound under the
assumption that running time is not observable
(Theorem 3). As noted earlier, soundness is only
part of the story; in this section we consider the
comparison of protection mechanisms. While
soundness is all or none, completeness provides a
measure with which to order these mechanisms.

A possible alternative protection mechanism
is the high—-water mark protection mechanism. It
is related to the mechanism in Weissman [1l4]. It
is based on the same transformations as we used in
constructing the surveillance mechanism except
that (2) is changed to:

2') Replace each assignment box in Q

v « E(w ,...,wp)

with the two assignment boxes

v<«vuw, U .,., Uw
1 P J

v IR
G*— Ef;rl,. .e ,wpﬂ

Intuitively, the high-water mark mechanism is
based on the assumption that there exists an
ordered sequence of security classifications, e.g.

top

public < confidential < secret < .
secret

The classification of each variable is initially
known and is recorded in an associated surveillance
variable. If a variable ever assumes a
classification, its future classification is always
at least as high.

We will now compare these two mechanisms.
Suppose that MS is the surveillance protection

mechanism for some program Q and security policy I
and Mh is the high-water protection mechanism for

Q and I. It is easy to see that MS #'Mh’ i.e. MS
is at least as complete as Mh‘ The following

simple flowchart and the policy allow(2) shows
that M > M, is possible:

In this case Mh always outputs A; on the other

hand, Ms outputs A only when X, 0. Intuitively,

survelllance is better here, since it allows
"forgetting” while high-water mark does not.

While surveillance is more complete than
high-water mark, it is not maximal, i.e. it is
not the mechanism that produces the fewest
violation notices. 1In order to see this,
consider the following program Q:

as,

Let I = allow(2) be the security policy. Then the
surveillance protection mechanism MS for Q and I

always outputs A, Consider, however, the
protection mechanism Mmax = Q. It is easy to see

that M is sound for Q and I,
max X

Mmax > M we see that the surveillance protection

mechanism is not maximal.

Since

204

The reason that the surveillance protection
mechanism performed poorly on Q is that, once the
branch on x there was taken, the surveillance
mechanism was unable to detect that the
assignment to y was independent of X, For the

remaining part of this section we will investigate
how to modify surveillance so as to make it more
complete. (We will continue to assume that
programs do not have their running times as
observables.)

As a step in this direction, suppose that we
modify surveillance so that it can detect
flowchart occurrences of the form:

FALSE TRUE

—>

For these if then else constructs, could we make
all future computations independent of the test
that determined whether the then or the else path
was to be taken so that the resulting protection
mechanism is still sound? The answer is yes and
is demonstrated by looking first at the example
if then else of Q:

TRUE

l w< 2
L,

Certainly, the structure above is functionally
equivalent to

W+ f(xl)
where £(1) = 1 if X = 1 and f(xl) = 2 otherwise.
Let us transform Q into Q':
'A

1 START

| v~ f(x

v
y <1
HALT

Now the surveillance protection mechanism for Q'
and I = allow(2) always gives the output 1;
clearly it is maximal.

This example is just an instance of a
general way to generate many different protection
mechanisms: Given a program Q, transform it to
Q' where Q and Q' are functionally equivalent.

Then apply the surveillance protection mechanism
to Q' to yield a sound protection mechanism for Q.
The if then else transform above is but one of
many. For instance, we could create a for loop
transform that operates on

FALSE

TRUE

in a way analogous to the if then else transform.
Indeed, transforms can be created for all
single-entry and single-exit structures.

Is the application of such transformations
always advisable? Unfortunately, the answer is

no. Consider the program Q:
FALSE TRUE
X, = 1
y
!y+xl y<«1
Let I = allow(2) be the security policy again.

Let M be the surveillance protection mechanism
for @ and I; also let M' be the protection
mechanism that corresponds to using the if then
else transform on Q. M' is the surveillance
protection mechanism for the following program:

y < if X, = 1 then 1 else Xy :]

G

M' ‘always outputs A. On the other hand, M
outputs 1 provided X, = 1; hence, M % M'.

The

danger is that since one does not know which
branch is to be taken one must assume the worst
case.

In summary, whether to apply a transform or
not is seldom a clearcut decision. But the
optimal strategy for deciding is not, as the next
theorem shows, computable.

Theorem 4: There is no effective procedure that
given a program Q and security policy I outputs a
maximal sound protection mechanism.

Proof: Consider the following program Q and the
security policy I = allow() (i.e. none of the
potential inputs are allowed:

205

- in any theory of security.

Gag)
'y *n . I.

7

P

o
.-
- —a—

T e ' e 'y

FALSE @ TRUE
R v
G2

N

HALT
Here P is a flowchart fragment that assigns the
value A(xl) to z where A(xl) is some arbitrary

0. Let M be a
=1 or A. We now

total function such that A(Q) =
protection mechanism. Now M(0)
claim that

(*) M(0) = 1 if and only if ¥x A(x) = 0.

Since I is empty, M must be a constant function.

If Vx, A(x) = 0, then M is always equal to 1.
Now assume that A(b) # 0; we must show that
M(0) # 1. Clearly, M(b) = 2 or A. If M(0) =1,
then M cannot be constant; hence (*) is true.

Now (*) shows that if we can effectively
construct M then we can effectively determine
whether or not Vx, A(x) = 0; this is, however,
impossible., [

5. Conclusions

The security area currently lacks unity in its
basic definitions and terminology. A contribution
of this work is the isolation and precise
statement of the key questions and concepts needed
It appears to us that
the following questions are central to any such
theory:

1. What is to be enforced?

2. What is to do the enforcing?

3. Does it do the enforcing?

4, If it does, then how well does it do the
enforcing?

5. What assumptions, if any, are made in
answer to question 3?7

These questions are expressed precisely in our
theory as follows:

1'. What is the security policy?

2'. What is the protection mechanism?

3', 1Is the protection mechanism sound?

4', How complete is the protection mechanism?
5'. Does the observability postulate hold?

Not only are these the key questions but our
framework is gemeral, It is not biased toward any
particular solution for providing security.

Acknowledgements

We would like to thank Bob Chansler for reading

several earlier versions of this paper and Stan
Eisenstat for a number of helpful suggestions.

We are grateful for many useful comments from the
referees and our colleagues, especially John
Bruno, Stockton Gaines, Mike Harrison, Butler
Lampson, Peter Neumann, Jerry Popek, Jerry
Saltzer, and Mike Schroeder.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

(8]

{91

[10]

(11]

[12]

[13]

[14]

[15]

D. W. Bell. Secure systems: A refinement of
the mathematical model. The Mitre
Corporation MTR 2547, Volume III, 1974,

D. Denning. Secure information flow in
computer systems, PhD thesis, Purdue
University CSD-TR-145.

A. C. Doyle. Silver blaze. The Memoirs of
Sherlock Holmes, 1874.

J. S. Fenton. Memoryless subsystems.
Computer Journal 17(2):143-147, 1974.

A. K. Jones. Protection in programmed
systems. PhD thesis, Carnegie~Mellon
University, 1973,

B. W. Lampson. A note on the confinement
problem. CACM 16(10)m 1973.

P. G. Neumann, L, Robinson, K. N. Levitt, R.
S. Boyer, and A. R. Saxena. A provably
secure operating system, SRI Final Report,
1975.

E. Organick. The Multics System: An
Examination of Its Structure. MIT Press,
1972,

D. Parnas. A technique for software module
specification, with examples. CACM 15:
330-336, 1972.

G. Popek and C. S. Kline. Verifiable secure
operating system software. AFIPS National
Computer Conference Proceedings, 145-151,
1974.

L. Rotenberg. Making computers keep
secrets. MIT-TR-115, 1974,

M. D. Schroeder. Cooperation of mutually
suspicious subsystems in a computer utility.
PhD thesis, MAC TR-104, Massachusetts
Institute of Technology, 1972.

K. G. Walter, W. F. Ogden, W. C. Rounds, F.
T. Bradshaw, S. R. Ames, and D. G. Schuman.
Models for secure computer systems. Case
Western Reserve Technical Report 1137, 1973.

C. Weissman. Security controls in the
ADEPT-50 time sharing system. AFIPS FJCC,
119-133, 1969.

W. A, Wulf, E. Cohen, W. Corwin, A. Jones,

R. Levin, C. Pierson, and R. Pollack. HYDRA:
The kernel of a multiprocessor operating
system. CACM 17(6):337-345, 1974.

206

