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systems, however, it is quite unclear what policies a mechanism can or does enforce. 

This paper defines security policies and protection mechanisms precisely and bridges 
the gap between them with the concept of soundness: whether a protection mechanism 
enforces a policy. Different sound protection mechanisms for the same policy can then be 
compared. We also show that the "union" of mechanisms for the same program produces a 
more "complete" mechanism. Although a "maximal" mechanism exists, it cannot necessarily 
be constructed. 

Key words and phrases: completeness, high-waEer mark, negative inference, observability, 
protection, protection mechanism, security, security mechanism, 
sound, surveillance, violation notice 

CR categories: 2.11, 4.30, 4.31 

i. Introduction 

Society differentiates kinds of information and 
endeavors to control its use. Out of concern for 
privacy of individuals and the cost of information 
theft, society has techniques for controlling who 
can obtain certain information, when they can 
obtain it, what uses they can put it to, and even 
who can produce it. We now symbolically represent 
sensitive information within computer systems. 
The control of information dissemination has 
proven to be as difficult to implement in computer 
systems as in the rest of society.* It is 
currently the subject of study by many researchers: 
Bell et al., Denning, Fenton, Jones, Lampson, 
Neumann et al., Popek, Rotenberg, Schroeder, 
Walter et al., Weissman, Wulf et al. [1,2,4,5,6,7, 
10,11,12,13,14,15]. 

* Benjamin Franklin observed that "Three may keep 
a secret, if two of them are dead." 

Jones was supported in part by the National 
Science Foundation under contract DCR 75-07251 and 
in part by the Advanced Research Projects Agency 
of the Office of the Secretary of Defense 
(F44620-73-C-0074), which is monitored by the Air 
Force Office of Scientific Research. Lipton was 
supported in part by the National Science 
Foundation under contract DCR 74-24193 and in 
part by the Army Research Office under confract 
DAHC04-72-A-0001. Both authors were supported in 
part by the Rand Summer Institute on Security. 

The need for precise and complete under- 
standing of the basic questions in the security 
area is mandatory. To illustrate this, compare 
security enforcement flaws to compiler design 
flaws. When a compiler error occurs, the users 
complain and demand correction. On the other 
hand, when a security error occurs, the violator 
does not disclose the system flaw that allowed 
him to perform prohibited actions. Often in the 
case of information theft no trace remains to show 
that one user read information private to another. 
For these reasons precision and proofs are not a 
luxury but a necessity. 

While precision and proofs are required, in 
order to be credible the basic framework must be 
simple and clear. No one will believe an 
unstructured system is secure, Just as no one will 
believe that a formal proof is correct if it is 
long, poorly structured, and based on imprecisely 
defined terms. We conclude that to be useful the 
basis of a theory in the security area must be 
simple. 

This paper develops the basic notions 
relevant to security, providing a framework in 
which the underlying principles of security can be 
investigated. We believe it to be precise, yet 
simple. As we illustrate, a clear understanding 
of these basic notions makes evident the 
inadequacies of some of the proposed approaches 
to providing security. 

The basic elements of our theory are precise 

197 



definitions of programs, of protection mechanisms, 
and of security policies. A security policy 
defines what information is to be protected; it 
has a non-procedural form. For example, a 
security policy might state that a user is not to 
obtain "top secret" information. In contrast, a 
protection mechanism defines how information is to 
be protected; it has a procedural form. For 
example, a protection mechanism might check each 
operation performed by a user. Soundness defines 
the bridge between the nonprocedural security 
policy and the procedural protection mechanism. 

2. Basic Model 

Security enforcement involves restrictions on the 
behavior of computer programs. These restrictions 
involve determining whether or not the output of a 
program encodes the proper information. This 
determination clearly depends only on the 
functional behavior of the program: If two 
programs are functionally equivalent, then their 
outputs certainly encode the same information. 
This observation leads to our view of programs 
simply as functions from some set of inputs to 
some set of outputs. 

Definition: Define Q to be a program provided 

Q: D I x ... x D k ÷ E 

where Q is a total function and D i is the range 

of the ith input and E is the range of the output. 

As demonstrated by Parnas [9] and extended 
by Neumann et al. [7], programs can have two 
distinct types of functions. They can be used as 
"V functions," i.e. they can be used to "view" 
their "inputs." On the other hand, they can be 
used as "0 operators," i.e. they can be used to 
"operate" on their inputs. (Here input 
corresponds to the current state of the system.) 
Consequently, there are two types of security 
questions. Suppose that Q is a program, i.e. 

Q: D I x ... x D k ÷ E. 

If Q is used as a view function, then the 
security question is: 

Does the value of Q(d I ..... ~) contain 

any information that it should not? 

This is the so-called "confinement" or 
"memoryless subsystem" question studied by 
Lampson [6], Schroeder [12], and Fenton [4]. On 
the other hand, if Q is used as an operator 
function, then the security question is: 

Has the function Q altered any infor- 
mation that it should not? 

This second question has sometimes been called 
"data security" (Popek [I0]). It concerns 
itself with whether or not information, such as 
a system table, has been illegally altered and 
hence lost. 

In the rest of this paper we will study the 
first security question, i.e. the case where Q 
is used as a view function. We do, however, 
assert without proof that the same methods used 

here to study this case can also be used to study 
the second case. Let us now examine some 
examples. 

E~nrple I: Fenton [4] studies programs Q of the 
form 

Q: D 1 × ... × D k + E 

where D. and E are the set of natural numbers. i 
The value Q(dl,...,dk) is the value obtained by 

the computation of some given Minsky-machlne that 
was starte@ with its ith register containing d i. 

Fenton studies whether or not Q(dl,...,~) 

contains in his terms "priv" information. We will 
return again to this example. 

Example 2: Consider a program Q of the form 

Q: D 1 x ... x Dk × F 1 x ... × F k ÷ E. 

Here D i is the set of possible values for the ith 

"directory"; F i is the set of values for the ith 

"file." The value of Q(dl,...,dk, fl,...,fk) is 

the result of some file manipulation program. In 
this example the ith directory will contain 
information about who can access the ith file. 
We wish, therefore, to know whether or not 
Q(dl,...,dk, fl,...,fk) contains any information 

about a file that was to be denied to us. We 
will return again to this example. 

Our model of securitz~_must check carefully 
that the value of the view function Q is all the 
information that is available about the inputs. 
We raise this restriction to the status of a 
postulate: 

The Observabili~ Postulate: The value of 
Q(d I .... ,~) must encode all the information 

available about the value of _ Cd I ,~)" 

Intuitively this statement appears sensible, yet 
almost too simple and obvious to mention. But it 
requires careful attention for two reasons. 
First, it is extra-mathematical in that no proof 
that it holds can ever be given. Second, there 
is a series of examples where it does not hold 
(Lampson [6]). One example of program output 
that is sometimes overlooked is execution time -- 
an implicit output that is often available for 
interactive programs. 

Example I continued: As Fenton correctly points 
out, the observability postulate does not hold 
for his programs. Indeed, both Denning [2] and 
Fenton leave it open how to handle execution 
time. One of the contributions of this paper is 
the understanding of how to handle execution time 
in a clear manner. This is elaborated later on. 

We now turn our attention to the study of 
protection mechanisms. A protection mechanism 
acts as a "gatekeeper": It suppresses or alters 
the output of the program it is protecting. In 
an operating system the protection mechanism is 
usually interleaved with the execution of the 
program being protected. This is not, however, 

198 



necessary. One can imagine a static protection 
mechanism that is implemented at compile time. 
Therefore, our definition of protection mechanism 
must be able to accommodate a wide variety of 
possible types of mechanisms. 

Definition: Suppose that Q: D 1 × ... × D k + E is 

a program. Then M: D 1 × ... x D k + EuF is a 

protection mechanism for Q provided for all 

(dl,...,dk) in D 1 x ... x Dk either 

i) M(d I ..... dk) = Q(d I ..... dk) or 

2) M(dl,...,dk) is in the set F. 

The set F consists of the violation notices of M. 

A protection mechanism acts as follows: 
Suppose that (dl,...,dk) is some possible input. 

Then the protection mechanism can either give 
Q(dl,...,dk) to the user or return a violation 

notice. The user is to interpret the violation 
notice as: "It looks as if you (the user) have 
attempted to view information that is to be denied 
to you; hence, I (the protection mechanism) am 
giving you this message." 

Example 3: Suppose that Q: D I x ... x D k + E is a 

program. Then there are two trivial protection 
mechanisms for Q. The first is the program Q 
itself. This corresponds, of course, to no 
protection at all. The second is the program 

M: D 1 × ... × D k ÷ Eu{^} 

where ^ is not in E and M(d I ..... ~) is always 

equal to ^. This corresponds to "pulling the 
plug." 

Example I continued: In Fenton's model there are 
two interesting points about his notion of 
protection mechanisms. First, Fenton does not 
make clear the distinction between the program Q 
and the mechanism M. This lack of distinction 
means, for example, that he cannot compare 
different types of protection mechanisms. Second, 
Fenton allows an unusual type of violation notice. 
In his case the violation notices (the set F) and 
the possible output of the original program Q 
(the set E) need not be disjoint. The set F 
includes the results of partial computations of 
the program Q. Thus it may be difficult for a 
user to determine whether or not he is getting 
Q(d I .... ,dk) ; (d I .... ,dk) is, after all, both the 

input and a violation notice. Practically 
speaking, this difficulty may make it 
particularly hard to find program bugs that 
cause violation notices. 

Exe~ple 2 continued: A violation notice in our 
simple file system might be a message of the form 
"Illegal access attempted, run aborted." 

The purpose of a protection mechanism is to 
control information; in our framework this leads 
to the notions of security policy and soundness. 

Definition: A security policy I for the program 

Q: D 1 × ... × D k + E is a function from 

D I × ... × D k to ~ where D is a new set. 

The key relation between a protection 
mechanism and a security policy is whether the 
mechanism enforces the policy. This relation is 
called "soundness." 

Definition: Suppose that I: D I × ... × D k + ~ is 

a security policy and M: D 1 × ... × D k + EuF is a 

protection mechanism for the program Q. Then M 
is sound provided there is a function M': Q + EuF 

such that for all (dl, .... dk) (2 = a new set) 

M(d I ..... d k) = M'(I(d I ..... dk)). 

A security policy, therefore, acts as an 
"information filter." A mechanism M is sound 
provided it behaves as if it received as input 

not (dl,...,dk) but rather l(dl,...,dk). The 

value of l(dl,...,dk) has presumably filtered out 

all the information that was to be denied to the 
user. Let us now examine some security policies. 

i. Suppose that l(dl,...,dk) is 

clearly this security policy 
no information." 

2. Suppose that l(dl,...,dk) is 

Then this security policy is 
any information he wants." 

always 0. Then 

is "Allow the user 

always (dl,...,dk). 

"Allow the user 

3. Suppose that l(dl,...,dk) = (dil ..... dim )" 

Then this security policy is "Allow the user 

any information from dil"'''dlm; deny him all 

information about the other d.'s." 
3 

Each of these security policies is characterized 
by either allowing information or allowing no 
information about some input. This type of 
security policy is the type that is studied in 
detail here. These pollcles are the ones most 
commonly supplied in real systems. For example, 
after a user logs on to a system, the files in 
the system can be divided into two classes: those 
he should be able to access and those he should 
not, (This partition of files may change with 
time, but at any instant such a partition exists.) 
Because of the importance of these policies we 
introduce a shorthand for them: 

Definition: Suppose that Q: D 1 × ... × D k + E is 

a program. Let allow(il,...,im) denote the 

security policy I: D 1 × ... × D k ÷ Dil x ... × Dim 

where 

l(d I ..... d k) = (dll ..... dim). 

Thus the security policy in (i) is allow(). The 
security policy in (2) is allow(l ..... k). The 
policy in (3) is allow(il,...,im). 

Example 1 continued: Fenton's notions of priv and 
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null correspond exactly to security policies of 
the form allow{...). 

Our definition of security policy is oriented 
towards obtaining a simple framework. The 
definition of security policy as a function, even 
with the allow shorthand, is not suitable for use 
in a real system. In such a system much more 
powerful shorthands are needed. For example, the 
"*" = all convention used in Multics (Organick [8]). 
These issues are not addressed here. 

We will now present a series of examples. 
These examples should help in understanding the 
basic notions of security polley and soundness. 

Example 3 continued: Clearly the protection 
mechanism that always outputs ^ is sound for any 
security policy. A program as its own protection 
may or may not be sound. 

Example 2 continued: An interesting security 
policy here is 

I(dl,...,dk,fl,...,f k) 

! 

= (d I ..... dk, f ~ ..... fk ) 

where fl is fl if d i = "YES" and is 0 otherwise. 

This security~poliey allows the user information 
about the ith file only in the case that the ith 
directory permits it. Note that the user can 
always obtain the value of all the directories. 
Note also that this security policy is not of the 
form allow(...). 

E~mple 4: Denning [2] and Rotenberg [ii] both 
contain an example of protection mechanisms that 
leak information via their violation notices. 
This should not be considered surprising; their 
examples simply demonstrate unsound protection 
mechanisms. If M Is sound, i.e. 

M(d I ..... d k) = M'(I(d I ..... dk)), then any 

decision made by M to output a violation notice 
can depend only on allowed information. 

Exar~ple 5: Suppose that we next consider the 
following "logon" program: 

Q: D I × D 2 × D 3 ÷ {true,false) 

where D 1 is the set of userids and D 2 is the set 

of possible tables that consist of pairs of the 
form 

(userid,password) 

and D 3 is the set of passwords. The value 

Q(dl,d2,d3) is true if and only if (dl,d 3) is in 

d2, i.e. only in the case that the password 

corresponds correctly to the given userid. Now 
consider the security policy allow(l,3), i.e. do 
not let the user have any information ~rom the 
password table. Then Q as its own protection 
mechanism (see example 3) is unsound. The reason 
this program is workable in practice is that the 
amount of information obtained by the user is 
"small." 

Example 6: The security policies studied here 

are "information control" policies. They must be 
distinguished from "access control" policies. 
For example, enforcing an access control policy 
that specifies that the operation READFILE(A) 
cannot be performed is not the same as insuring 
that information about A is not extracted. There 
may be a sequence of operations excluding 
READFILE(A) that has the same effect as 
READFILE{A). 

ExcmTple I continued: Fenton's protection 
mechanism i~ not completely defined. Indeed one 
reasonable interpretation of it is unsound. The 
difficulty is the halt statement: 

if P = null then halt. 

What happens if P # null? One possibility is that 
in this case an error message (i.e. a violation 
notice) is output. This is, however, unsound, as 
the following program demonstrates: 

y := 0; 
if x = 0 then begin y := i; halt end; 
halt 

This program will output an error message if and 
only if x = 0. If the security policy wishes to 
deny information about x, then this is unsound. 
Intuitively, the difficulty here is what we call 
"negative inference." When the program behaves 
correctly (i.e. does not try to halt when it 
should not) everything is fine; it fails when the 
program behaves incorrectly. A classic negative 
inference is due to A. C. Doyle [3]: 

Inspector: Is there any other point to which you 
would wish to draw my attention? 

Holmes: To the curious incident of the dog in 
the nighttime. 

Inspector: The dog did nothing in the nighttime. 

Holmes: That was the curious incident. 

We next relate the observabillty postulate 
and the concept of soundness. Consider the 
following program Q: 

L for 1103step  

We consider x as the input and y as the output; 
hence, for any x, Q(x) = i. For the security 
policy allow(), i.e. allow no information about 
x, the program Q as its own protection mechanism 
is sound. This follows trivially since Q is a 
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constant function. We can, however, simply observe 
the running time of Q to determine whether or not 
x = 0. This difficulty stems not from the 
definition of soundness but rather from a 
violation of the observability postulate: The 
running time of Q was an implicit output. 

This example is compatible with our framework 
as follows: Let a program's output be not Just 
its computed output value hut also its running 
time, which records the elapsed real time, the 
elapsed compute time, or the number of steps 
executed. Now returning to program Q the 
observability postulate is valid. In particular 
Q(x) = (i,T), where T is the number of steps 
executed. Clearly this program is not sound for 
the policy allow(). This method is used in 
section 3 to show how our surveillance protection 
mechanism can handle running time. 

One further example should reinforce the 
subtlety and importance of the relation between 
soundness and the observability postulate. Let 
programs have inputs that are placed on a linear 
one-way read-only tape with the head initially at 
the leftmost character: 

where each z i is a block of characters. Consider 

a security policy allow(2), i.e. allow information 
only about the second block. Then we claim that 
no program Q can read z 2 and also be sound, 

provided running time is observable. This follows 
since, in order for Q to get to the part of the 
tape where z 2 is stored, it must move across z I. 

Even if Q does not "look" at Zl, it will encode 

the length of z I into the computation of Q; 

hence, Q will not be sound. How can we avoid this 
problem? One answer is to add a new operation, 
say tab(i). This operation in one step causes the 
read head to Jump directly to the ith block. Now 
Q can read z 2 and he sound. But a new problem 

arises: Is the observability postulate valid? 
Perhaps tab(i) takes time dependent on the length 
of Zl,...,Zi_l? This is the crux of the problem, 

and there seem to be two answers: Either (i) run 
tab(i) so that it uses constant time, or (2) apply 
our methods recursively to tab(i). 

While soundness is the most important bridge 
between protection mechanisms and security 
policies, the central issue is not just to 
construct sound protection mechanisms. The 
protection mechanism that always outputs some 
fixed violation notice is certainly sound -- 
recall example 3. It is also useless. (It's 
equivalent to pulling the computer's plug out of 
the wall.) We are therefore led to consider the 
concept of how "complete" a protection mechanism 
is. 

Definition: Suppose that M I and M 2 are protection 
mechanisms for the same program Q and policy I. 

Then M I is as complete as M 2 (M l > M 2) provided, 

for all inputs a (a stands for (al,...,ak)), 

if M2(a) = Q(a) then Ml(a) = Q(a). Also M 1 is 

more complete than M 2 (M I > M 2) provided M I ~ M 2 

and, for some a, Ml(a) = Q(a) and M2(a) ~ Q(a). 

The relation ~ is a partial ordering on the 
protection mechanisms for a given program and 
policy. Also, ~ is a practically motivated 
ordering: Consider a single output program with 
two protection mechanisms M I and M 2. M I > M 2 

implies that M I never gives a violation notice 

when M 2 does not. This implies that the utility 

of M I is at least as high as that of M2, for one 

is interestedonly in getting non-violation 
notices. 

We can show how to "join" two sound 
protection mechanisms to form a new sound one that 
is as complete as each of the other two. 

Definition: Suppose that M I and M 2 are protection 

mechanisms for the program Q. Define M I v M 2 to 

be the protection mechanism M defined by 

~Q(a) provided 

V input a, M(a) =~i, Mi(a) = Q(a), i ~ {1,2} 

I 
~Ml(a) otherwise 

The key property of union is that if either Ml(a) 

or M2(a) has the same output as Q(a) then so has 

the union, M I v M2(a). Note that, even though 

the definition is not symmetric, M I v M 2 = M 2 v M I. 

Theorem I: Suppose that M I and M 2 are sound, 

protection mechanisms for program Q and security 
policy I. Then M I v M 2 is a sound protection 

mechanism for Q and I. Moreover, M I v M2~ M I 

and M I v M 2 ~ M 2 . 

Proof: Immediate from the definitions. 

We can easily generalize Theorem i to show 
that from the sound protection mechanisms 
Mi,M2,... we can define one all-encompasslng 

sound protection mechanism M = M I v M 2 v ... 

such that M ~ M i. Indeed it can easily be shown 

that the sound protection mechanisms form a 
lattice; we shall not, however, need this 
observation in the sequel. 

Theorem 2: For any program Q and security policy 
I there exists a sound protection mechanism M for 
Q and I such that M is maximal. That is, for all 
sound protection mechanisms M' for Q and I, M ~ M'. 

Proof: Let M = {M' I M' sound for Q and I}. Let 
M then be u N. Then as in Theorem i, M ~N for 

NEM 
any sound protection mechanism M; hence, M is 
maximal. 

(Note that M, while well defined as a function, 
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may not he recursive -- even if Q is.) 

We have established that the maximal 
protection mechanism exists, but as we shall show 
later, it cannot always be constructed. 

We have now completed the development of our 
security model. The value of any model is in its 
useful application. We find that having the 
model's precise definitions, which are independent 
of any particular model of computation or any 
mechanics of protection mechanism implementation, 
aids in understanding and appraising work in the 
security area. For example, we have already noted 
that if all pertinent observables cannot be 
specified then the "forgotten" observables provide 
a means for leaking i~formation. Such was the 
case for abe PDP-iO Tenex system where the 
presence or absence of page faults could be used 
to ob~aln passwords. 

In sun~nary, we should point out that we have 
informally used words like "information flow" and 
"dependence." What these terms mean is precisely 
captured by the definition of soundness. Though 
our security model can be easily understood 
informally, it is mandatory that it be precisely 
defined as well. Without a precise basis on which 
to build, one will never be able to make progress 
in convincing others about the security properties 
of a system. 

3. Surveillance Protection Mechanism 

This section both illustrates a new protection 
mechanism and develops the framework put forth in 
the preceding section. In order todefine this 
mechanism we will restrict our programs to be 
flowcharts with a single output and policies of 
the form allow(...). We will then show how to 
assign to each flowchart and security policy a 
protection mechanism called the surveillance 
protection mechanism, This mechanism and a 
modified version that ignores runtime are then 
proved to be sound. 

De~n~tion: A flowchart F with input variables 
Xl,...,x k and with program variables ri,...,r m 

and with output variable y (i.e. those variables 
used for temporary values) is a finite connected 
directed graph whose nodes are boxes of the form: 

i) Start box: 

2) Decision box: 

3) Assignment box: 

4) Halt box: 

[ LT 3 

Here B(W) is a predicate and E(W) is an 
expression. We ascribe to the flowchart F the 
usual semantics : The values of the variables 
(input, program, and output) are the integers. 
There is exactly one start box; execution begins 
there by initializing all the program variables 
and the output variables to 0. Since we view the 
flowchart F as computing a program Q with domain 
Z × ... x ~ (~ = integers), we assume that each 
input variable is initialized to the value that 
corresponds to the current input. Thus if 
(al,...,ak) is the input value, then x i is 

initialized "to a i. Execution then follows the 

logic of the flowchart; at a decision box, the 
path that corresponds to the predicate's truth 
value is taken. Please note that no specific 
assumptions are made about what predicates or 
expressions are allowed: Any reasonable choice is 
allowed (i.e. so long as predicates and 
expressions are recursive there is no difficulty.) 

The observability postulate makes it 
necessary to state exactly what the range of Q 
(the program computed by F) is. Here we will 
assert that we will study these flowcharts under 
two distinct assumptions. First, we will study 
the case where the range of Q is ~ x ~. That is, 
the value of Q(~) has two components. The first 
is ~he value of y when the flowchart halts; the 
second is the number of steps executed by the 
flowchart, i.e. the "time" used by the flowchart 
in computing the value of y. Therefore, we will 
be encoding the running time of our flowcharts. 
(Note that we might have chosen any of a number 
of attributes other than running time, but we feel 
that it is representative.) Second, we will also 
study the case where the range of Q is just ~ In 
this case the value of Q(a) has only one component: 
the value of y when the flowchart execution halts. 
This second case is the one where we assume that 
running time is not observable to a user. 

We next describe the surveillance protection 
mechanism. It is based on the idea of keeping 
track of what inputs a variable may "depend on." 
Essentially we will associate with each variable 
in the program a new variable v. The value of v 

will be the set of indices of input variables 
that may have affected the current value of v in 
some way. A key point here is that we must keep 
track of v not only for input, program, and output 

variables but also for the program counter of the 
program. The need to do this for the program 
counter is independently illustrated in Fenton 
[4]. Therefore, let the program counter of Q be 
denoted by C. 

Def~n~.~on: Suppose that Q is a flowchart 
program.# Associate with each variable v of Q 

(input Xl,...,Xk; program rl,...,rm; output y; 

program counter C) a new variable v called the 

surveillance variable of v. The values of v are 

always subsets of {l,...,k}. 

We will now construct the surveillance 

# We will now identify programs with flowcharts. 
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protection mechanism for the case where time is 
not part of the output (i.e. when the range of Q 
is just Z). Then the surveillance protection 
mechanism M corresponding to the program Q and 
some security policy I = allow(J) is constructed 
as follows. 

The variables of M are the variables of Q 
plus the surveillance variables. M is obtained 
from Q by applying the following transformations: 

i) Insert directly after the START box the 
assignments that set ~ to {i} if v is the 

input x i and set ~ to ~ otherwise. (~ is the 

empty set.) 

2) Replace each assignment box in Q 

with the two assignment boxes 

3) Replace each decision box in Q 

with the assignment box and decision box 

° 

4) F i n a l l y ,  r e p l a c e  e a c h  HALT box  w i t h  

Here ^ is a symbol that is not a normal output of 
Q; it is used as a violation notice. Recall that 
I = allow(J). Clearly, given a program Q and a 
security policy I, M is indeed a protection 
mechanism. Indeed, M is always sound: 

f~eorem $: If M is the surveillance protection 
mechanism for the program Q and the security 
policy I, then M is sound for Q and I provided 
running times are not observable. 

In contrast, it is easy to see that M is 
unsound when running time is observable. Indeed, 
both Fenton [4] and Denning [2] point out that it 
is an interesting problem of how to handle running 

time. We will now show how our surveillance 
protection mechanism can be modified to handle 
running time and still remain sound. 

Definition: Suppose that Q is a program and I is 
a security policy. Then construct the 
surveillance protection mechanism M' for the case 
where running time is observable as follows: 

Transform Q into M' by replacing each decision 
box  of Q 

with the structure 

I f g ÷ g l  u . . .  UEp  u C~ 

FALSE~ ~ ~ _  TRUE 

and performing the other transformations as 
before. Intuitively, if a disallowed variable is 
about to be tested, flowchart execution is halted 
and a violation notice is given -- immediately. 
Then it is easy to see that M' is a protection 
mechanism. Indeed, 

~eorem 3': If M' is the surveillance protection 
mechanism for the program Q and the security 
policy I, then M' is sound for Q and I even if 
running times are observable. 

4. Comparison of Protection Mechanisms 

In the last section, the surveillance protection 
mechanism was presented. It is sound under the 
assumption that running time is not observable 
(Theorem 3). As noted earlier, soundness is only 
part of the story; in this section we consider the 
comparison of protection mechanisms. While 
soundness is all or none, completeness provides a 
measure with which to order these mechanisms. 

A possible alternative protection me~anism 
is the hish-water mark protection mechanism. It 
is related to Me mechanism in Weissman [14]. It 
is based on the same transformations as we used in 
constructing the surveillance mechanism except 
Sat (2) is changed to: 

2') Replace each assignment box in Q 

[v,E(w~ . . . . .  Wp) 1 

4- 
with the two assignment boxes 

, 
v ' g v  u Wl U . . .  U w 

- -  

U *  E wl . . . .  
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Intuitively, the hlgh-water mark mechanism is 
based on the assumption that there exists an 
ordered sequence of security classifications, e.g. 

public < confidential < secret < top 
secret" 

The classification of each variable is initially 
known and is recorded in an associated surveillance 
variable. If a variable ever assumes a 
classification, its future classification is always 
at least as high. 

We will now compare these two mechanisms. 
Suppose that M is the surveillance protection 

S 

mechanism for some program Q and security policy I 
and M h is the high-water protection mechanism for 

Q and I. It is easy to see that M s ~Mh, i.e. M s 

is at least as complete as M h. The following 

simple flowchart and the policy allow(2) shows 
that M s ~ M h is possible: 

In this case ~ always outputs ^; on the other 

hand, M s outputs ^ only when x 2 ~ 0. Intuitively, 

surveillance is better here, since it allows 
"forgetting" while high-water mark does not. 

While surveillance is more complete than 
hlgh-water mark, it is not maximal, i.e. it is 
not the mechanism that produces the fewest 
violation notices. In order to see this, 
consider the following program Q: 

/ \  

Let I = allow(2) be the security policy. Then the 
surveillance protection mechanism M for Q and I 

S 

always outputs A. Consider, however, the 
protection mechanism M = Q. It is easy to see 

max 
that M x is sound for Q~x and I. Since 

M ~ M we see that the surveillance protection 
max 

mechanism is not maximal. 

The reason that the surveillance protection 
mechanism perfo~ed poorly on Q is that, once the 
br~ch on x there was taken, the surveillance 
mechanism was un~le to detect that ~e 
assi~ment to y was ~dependent of x I. For ~e 

remaining part of this section we will investigate 
how to modify surveillance so as to m~e it more 
complete. (We will continue to assume that 
programs do not have their running times as 
observ~les.) 

As a step ~ this direction, suppose that we 
modify surveillance so that it can detect 
flowchart occurrences of the fo~: 

f 

For these if then else constructs, could we make 
all future computations independent of the test 
that determined whether the then or the else path 
was to be taken so ~at the result~g protection 
mechanism is still sound? The answer is yes ~d 
is demonstrated by looking first at the example 
if then else of Q: 

FUSE ~ TRUE 

~ x I = i 

| . . -  . . . . . . . .  ~ 

C e r t a ~ l y ,  t h e  s t r u c t u r e  ~ o v e  i s  f u n c t i o n a l l y  
equ~alent to 

- 

where f(1) = i if x I = i and f(xl) = 2 othe~ise. 

Let us transfo~ Q into Q': 

' I | w ÷ f ( x l )  
I 

Now t h e  s u r v e i l l a n c e  p r o t e c t i o n  mechanism f o r  Q' 
and I = a l l o w ( 2 )  a ~ a y s  g i v e s  t h e  o u t p u t  1; 
c l e a r l y  i t  i s  maximal .  

Th i s  example  i s  j u s t  an i n s t a n c e  of  a 
g e n e r a l  w ~  to  g e n e r a t e  many d i f f e r e n t  p r o t e c t i o n  
mechan i sms :  Given a p rogram Q, t r a n s f o ~  i t  t o  
Q' whe re  Q and Q' a r e  f u n c t i o n a l l y  e q u i v a l e n t .  

204 



Then apply the surveillance protection mechanism 
to Q' to yield a sound protection mechanism for Q. 
The if then else transform above is but one of 
many. For instance, we could create a for loop 
transform that operates on 

FALSE 

in a way analogous to the if then else transform. 
Indeed, transforms can be created for all 
single-entry and single-exit structures. 

Is the application of such transformations 
always advisable? Unfortunately, the answer is 
no. Consider the program Q: 

_ 

Let I = allow(2) be the security policy again. 
Let M be the surveillance protection mechanism 
for Q and I; also let M' be the protection 
mechanism that corresponds to using the if then 
else transform on Q. M' is the surveillance 
protection mechanism for the following program: 

, i . I  

M' always outputs ^. On the other hand, M 
outputs i provided x 2 = I; hence, M ~ M'. The 

danger is that since one does not know which 
branch is to be taken one must assume the worst 
case. 

In summary, whether to apply a transform or 
not is seldom a clearcut decision. But the 
optimal strategy for deciding is not, as the next 
theorem shows, computable. 

TheoPem 4: There is no effective procedure that 
given a program Q and security policy I outputs a 
maximal sound protection mechanism. 

/h~oof: Consider the following program Q and the 
security policy I = allow( ) (i.e. none of the 
potential inputs are allowed: 

: , p 

F A L S E R  ! TRUE 

Here P is a flowchart fragment that assfgns the 
value A(Xl) to z where A(Xl) is some arbitrary 

total function such that A(0) = 0. Let M be a 
protection mechanism. Now M(0) = i or ^. We now 
claim that 

(*) M(0) = i if and only if Vx A(x) = 0. 

Since I is empty, M must be a constant function. 

If Vx, A(x) = 0, then M is always equal to i. 
Now assume that A(b) ~ 0; we must show that 
M(0) ~ i. Clearly, M(b) = 2 or ^. If M(0) = i, 
then M cannot be constant; hence (*) is true. 

Now (*) shows that if we can effectively 
construct M then we can effectively determine 
whether or not Vx, A(x) = 0; this is, however, 
impossible. 

5. Conclusions 

The security area currently lacks unity in its 
basic definitions and terminology. A contribution 
of this work is the isolation and precise 
statement of the key questions and concepts needed 
in any theory of security. It appears to us that 
the following questions are central to any such 
theory: 

1. What is to be enforced? 
2. What is to do the enforcing? 
3. Does it do the enforcing? 
4. If it does, then how well does it do the 

enforcing? 
5. What assumptions, if any, are made in 

answer to question 3? 

These questions are expressed precisely in our 
theory as follows: 

I'. What is the security policy? 
2'. What is the protection mechanism? 
3'. Is the protection mechanism sound? 
4'. How complete is the protection mechanism? 
5'. Does the observability postulate hold? 

Not only are these the key questions but our 
framework is gener@l~ It is not biased toward any 
particular solution for providing security. 
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